

Lumi Language Guide

Welcome to Lumi programming language guide!

Lumi is a general purpose programming language that is good for all needs,
specially for long-term projects, or where resource efficiency is needed.

Lumi aims to be safe, efficient, flexible, easy to write,
and easy to maintain. See Lumi Language Goals and Features for more details.

Lumi files use .lm extension.

“Lumi” name was chosen because:

	“Lumi” is an abbreviation for “Illuminating”, and Lumi language aims to cast
new light to the programming world. (it’s also the meaning of my first name)

	“Lumi” means “snow” in Finnish, which is bright, light, handy, flexible,
strong and fun - such as the Lumi language. (and also - I like snow)

	“Lumi” is short, easy to pronounce, and fun to say.

The Lumi image is
Designed by kjpargeter / Freepik [http://www.freepik.com]

A Work in Progress…

Lumi is still under initial planning and building. Many features are already
implemented and it is possible to write complex programs with Lumi, but some
key elements are not, and many implemented feature may change dramatically.

The latest state of the language is named “Temporary Lumi 5”, or “TL5” in short, to emphasizing the current temporary state
of the language.

Contributing to Lumi

Any help, suggestion, comment or questions is welcome! See Lumi repository
wiki [https://github.com/meircif/lumi-lang/wiki] for more details on how to contribute to Lumi.

Installation and Usage

	Quick Start - Hello World Example
	Quick Installation

	Hello World Program

	Hello World Test

	Installing and Building Lumi
	Syntax Highlighting

	Installing Lumi

	Building the Lumi Compiler

	Building the lumi Command

	Using the lumi Command
	Command Help

	Usage

	Specifying an Explicit Output File Name

	Compiling Tests

	Compiling a Shared Library

	Only Running Lumi Compiler

	Only Running C Compiler

	Extra C arguments

	Running the Generated Executable

	Verbose and Debug

	Old Version Limitations

	Using Lumi Compiler Directly
	Latest Version - TL5 Compiler

	Compiling Testing Code

	Compiling Shared Library Code

	Building an Executable

	Old Versions

Concepts

	Lumi Language Goals and Features
	Prioritized Goals

	Features

	Memory Management
	No Performance Overhead - compile time only reference managing

	More Flexible Reference Managing - with a small performance cost

	Maximum Flexibility - but with performance issues

	Conditional and Empty References

	Thread Safety
	The default approach - complete data isolation

	Sharing data between threads

	Integer Ranges and Overflow Prevention
	Integer Ranges

	Integer Arithmetic

	Compile Time Overflow Prevention

	Run-Time Overflow Checking

	Efficient Native Wraparound

	Clamping

	Sequences Index Integer Range

	Type System
	Typing Styles of User Defined Types

	Static Structures

	Dynamic Interfaces

	Extending Types

	Classes - Binding Dynamic Interfaces and Static Structures

	Parameterized Types

	Embedding a Dynamic Reference in a Static Structures

	Automatic Dynamic Interfaces

Syntax

	General Syntax Highlights
	TL[number] - Temporary Lumi Language

	Latest Version - TL5

	Basic Syntax
	Comments

	Documentation

	Operators

	Modules

	Built-in Types
	Integer

	Infinitely Long Integer

	Boolean

	Character

	Byte

	Real Number

	Function

	Array

	Buffer

	String

	Files

	sys Module

	Variables and Constants
	Compile-Time Constants

	Enumerators

	Primitive Variables

	References

	Static Allocation

	Dynamic Allocation

	Functions
	Summary

	Arguments

	Access

	Return and Output

	Error Handling

	Calling a Function

	User Defined Types
	Static Structures

	Dynamic Interfaces

	Classes and Binds

	Parameterized Types

	Embedded Dynamic Reference

	Control Flow
	If-Else Condition

	Switch-Case Condition

	Simple Loop

	Repeat Loop

	For Loop

	Testing
	Test Cases

	Assertions

	Mocking

	Interacting with Other Languages
	The cdef Module

	Calling C Functions

	Accessing C Global Variables

	Accessing C Global Constants or Defines

	Accessing C Structures

	Accessing Custom C Types

	Writing C Code Directly

	C Wrapper Code

	Exporting C style Functions in a Shared Library

	Standard Library

	Code Examples
	Hello World Program

	Testing the Hello World Program

	Fibonacci Function

	Complex number Type

Future

	Serialization

	Asynchronous IO

Quick Start - Hello World Example

This is a quick guide to install, compile and run Lumi “hello-world” example in
Linux.

Quick Installation

Clone Lumi repository [https://github.com/meircif/lumi-lang] (git clone
https://github.com/meircif/lumi-lang.git).

Enter the repository root directory: cd lumi-lang.

Install it: make install.

Hello World Program

hello-world.5.lm

module hello-world

func ! show()
 sys.println(user "hello world")!

main!
 show()!

Compile it: lumi docs/hello-world.5.lm.

Run it:

>>> docs/hello-world
hello world

Hello World Test

hello-world-test.5.lm

module hello-world-test

var Bool println-raise
var String printed-text

mock ! sys.println(user Buffer text)
 if println-raise
 raise! "error in println"
 printed-text.concat(user text)!

test show-hello-world-test()
 println-raise := false
 printed-text.clear()
 hello-world.show()!
 assert! printed-text.equal(user "hello world")

test show-raise-test()
 println-raise := true
 assert-error! hello-world.show(), "error in println"

Compile it: lumi -t hello-world docs/hello-world-test.5.lm
docs/hello-world.5.lm.

Run it:

>>> docs/hello-world-test
Running tests:
testing show-hello-world-test... OK
testing show-raise-test... OK
testing code coverage... 100%
Tests passed

Installing and Building Lumi

Syntax Highlighting

For Lumi syntax highlighting it’s recommended to use one of:

	Visual Studio Code [https://code.visualstudio.com] editor with Lumi Language extension [https://marketplace.visualstudio.com/items?itemName=meircif.lumi]
installed

	Atom [https://atom.io] editor with language-lumi package [https://atom.io/packages/language-lumi] installed

Installing Lumi

Note

In all shell examples below $CC assumed to hold the C compiler, and the
current directory assumed to be on Lumi repository [https://github.com/meircif/lumi-lang] root directory

	clone or download Lumi repository [https://github.com/meircif/lumi-lang]: git clone
https://github.com/meircif/lumi-lang.git

	run make install

or install manually:

	build the latest Lumi compiler with a C compiler:
$CC TL5/tl5-compiler.c TL4/lumi.4.c -ITL4 -o tl5-compiler

	build the “lumi” command with a C compiler:
$CC lumi-command/lumi.c TL4/lumi.4.c -ITL4 -o lumi

	add the Lumi compiler and the lumi command to the system path
(for example: sudo install lumi tl5-compiler /usr/local/bin/)

Building the Lumi Compiler

A Lumi compiler must first be built using a C compiler. That Lumi compiler
can then be used to generate C code from Lumi code.

It is recommended to add the compiler executable to the system path, for
example, in Linux move it to /usr/local/bin/.

Latest Version - TL5 Compiler

make tl5-compiler
or
$CC TL5/tl5-compiler.c TL4/lumi.4.c -ITL4 -o tl5-compiler

Old Versions

TL4 compiler
make tl4-compiler
or
$CC TL4/tl4-compiler.c TL3/lumi.3.c -ITL3 -ITL4 -I. -o tl4-compiler

TL3 compiler
make tl3-compiler
or
$CC TL3/tl3-compiler.c TL2/lumi.2.c -ITL2 -o tl3-compiler

TL2 compiler
make tl2-compiler
or
$CC TL2/tl2-compiler.c TL1/lumi.1.c -ITL1 -o tl2-compiler

TL1 compiler
make tl1-compiler
or
$CC TL1/tl1-compiler.c TL0/tl0-file.c TL0/tl0-string.c -ITL0 -o tl1-compiler

TL0 compiler
make tl0-compiler
or
$CC TL0/tl0-compiler.c TL0/tl0-file.c TL0/tl0-string.c -o tl0-compiler

Building the lumi Command

The lumi command must first be built using a C compiler. lumi command
can then be used to compile an executable directly
from Lumi code by running Lumi compiler and C compiler one after another.

make lumi
or
$CC lumi-command/lumi.c TL4/lumi.4.c -ITL4 -o lumi

It is recommended to add the compiler executable to the system path, for
example, in Linux move it to /usr/local/bin/.

Using the lumi Command

The lumi command is a tool that helps compile, test, and run Lumi code.
For example, lumi command can be used to build
an executable directly from Lumi code by simply running lumi hello.5.lm.

The lumi command:

	assumes the used Lumi compilers are already built and
are in the system path

	uses the CC environment variable to determine the C compiler command,
using gcc if not exists

	supports all Lumi version from TL0 to TL5

Command Help

Running lumi -h or lumi --help will print help:

>>> lumi -h
Usage: lumi [options] file...
Options:
 -h/--help print this help
 --version print lumi command version
 -o <file> output file name
 -t <module> compile test program for <module>
 -l <module> compile shared library exporting <module>
 -c only create C file(s)
 -TL<version> only run C compiler for TL<version>
 -e <argument> extra argument for C compilation
 -p <lumipath> path of lumi-lang repository
 -r run the compiled program
 -ra <arguments> run the compiled program with given arguments
 -v/--verbose print executed commands
 -d/--debug only print commands without execution

Usage

The basic usage of lumi command is to take one or more Lumi files and
create a single executable from them. For example:

lumi hello.5.lm

will create a hello named executable compiled from hello.5.lm,
generating a hello.c C file in the process. This is done by running Lumi
compiler and C compiler one after another.

If multiple Lumi files are given, the generated name will be based on the first
input file.

lumi command detects the TL version based on the input file extension
.[TL version].lm and runs the respective Lumi compiler.

Specifying an Explicit Output File Name

The output file name can be explicitly defined with -o <output file name>.
For example:

lumi hello.5.lm -o output

will generate output named executable, and output.c named C file in the
process.

Compiling Tests

Lumi compiler allows generating testing code for a specific
Lumi module. This feature can be used in lumi command with -t <tested
module name>. For example:

lumi -t hello hello-tests.5.lm hello.5.lm

will generate hello-tests executable that tests the hello module.

Running a Lumi test executable with -xml argument will also generate a
cobertura.xml named file with code coverage XML report in cobertura [http://cobertura.github.io/cobertura/]
scheme.

Compiling a Shared Library

Lumi compiler allows generating code for a shared library exporting
C styled functions from a specific Lumi module.
This feature can be used in lumi command
with -l <exported module name>, and only functions from the given module
will be exported to the shared library. For example:

lumi -l hello hello.5.lm

will generate libhello.so shared library that exports functions from
the hello module.

Only Running Lumi Compiler

To only run the Lumi compiler -c flag can be used. For example:

lumi -c hello.5.lm

will only generate hello.c C file.

Only Running C Compiler

To only run the C compiler -TL<TL version> flag can be used. The TL version
number must be given as it cannot be detected from the input C file name. For
example:

lumi -TL5 hello.c

will only generate hello executable, assuming hello.c was generated by
TL5.

Extra C arguments

To add extra arguments to the C compilation -e can be used. For
example:

lumi hello.5.lm -e external.c

will add external.c as an input to the C compiler, while ignoring it in the
Lumi compilation. This is mainly needed when external C code is called
from Lumi.

Running the Generated Executable

The generated executable can also be run using -r. For example:

lumi -r hello.5.lm

will generate hello executable and then run it.

It is possible to also send arguments to the executable using
-ra <arguments>.
For example:

lumi -r hello.5.lm -ra 'first-arg "second arg"'

Will run hello first-arg "second arg".

Verbose and Debug

Adding -v or --verbose option will also print the executed commands.

Adding -d or --debug option will only print the commands without
execution.

Old Version Limitations

	TL4 and below assumes LUMIPATH is correctly configured

	multiple input Lumi files are not supported in TL0 and TL1

	implicit output name is determined by the last file in TL2, and not the first

	TL2 and TL3 generate multiple C files - one C file for each input Lumi file,
this also meas that an explicit output name for C files is not supported

	testing is only supported in TL4 and above

LUMIPATH

For C linking purposes in TL4 and below lumi command needs to know the
local Lumi repository [https://github.com/meircif/lumi-lang] root directory path. This can be configured by one of:

	running lumi command inside the Lumi repository [https://github.com/meircif/lumi-lang] root directory

	setting the value of LUMIPATH environment variable to the path

	running lumi with flag -p <path> (this will override LUMIPATH
environment variable)

Path Separator

The default path separator in lumi command is /. In systems where the
path separator is \ instead (such as Windows), the LUMIPATH must end
with a \ character. Doing this will set the path separator in lumi
command to \.

Using Lumi Compiler Directly

Using the lumi Command is recommended to compile Lumi code. Using the Lumi
compiler directly is possible, but it is less convenient.

Latest Version - TL5 Compiler

The TL5 compiler generates a single C file based on one or
more Lumi files. For example

tl5-compiler hello.c hello.5.lm other.5.lm

will generate hello.c C file from hello.5.lm and other.5.lm Lumi
files.

Compiling Testing Code

To generate C code that tests a specific Lumi module -t <tested module name>
should be used. For example:

tl5-compiler -t hello hello-tests.c hello.5.lm hello-tests.5.lm

will generate hello-tests.c C file from hello.5.lm and
hello-tests.5.lm Lumi files, with C code that tests the hello module.

Compiling Shared Library Code

To generate C code that can be compiled to a shared library exporting
C styled functions from a specific Lumi
module -l <exported module name> should be used. For example:

tl5-compiler -l hello hello-lib.c hello.5.lm other.5.lm

will generate hello-lib.c C file from hello.5.lm and
other.5.lm Lumi files, with C code that can be compiled to a shared library
exporting functions from the hello module.

Building an Executable

The generated C file can be compiled on its own to an executable using a C
compiler. For example:

$CC hello.c -o hello

will generate hello executable.

Old Versions

TL4
compiling hello.4.lm to hello.c
tl4-compiler hello.c hello.4.lm other.4.lm
compiling tests
tl4-compiler -t hello hello-tests.c hello.4.lm hello-tests.4.lm
compiling the C code as an executable
$CC hello.c TL4/lumi.4.c -ITL4 -o hello

TL3
compiling hello.3.lm to hello.c
tl3-compiler hello.3.lm
compiling the C code as an executable
$CC hello.c TL3/lumi.3.c -I. -ITL3 -o hello

TL2
compiling hello.2.lm to hello.c
tl2-compiler hello.2.lm
compiling the C code as an executable
$CC hello.c TL2/lumi.2.c -ITL2 -o hello

TL1
compiling hello.1.lm to hello.c
tl1-compiler hello.1.lm hello.c
compiling the C code as an executable
$CC hello.c TL1/lumi.1.c -ITL1 -o hello

TL0
compiling hello.0.lm to hello.c
tl0-compiler hello.0.lm hello.c
compiling the C code as an executable
$CC hello.c TL0/tl0-file.c TL0/tl0-string.c -ITL0 -o hello

Lumi Language Goals and Features

Prioritized Goals

	Enforce safe and reliable code, free from:

	illegal memory access

	memory corruption

	memory leaks

	integer overflow

	unexpected crashes

	etc…

	Allow writing of efficient code, suitable for real-time embedded:

Modern programming languages solve goal #1 by making everything
dynamically allocated and garbage collected, but this is inefficient and
unpredictable. Lumi will allow as much efficiency and freedom as
possible, as long as goal #1 is not harmed.

	Be flexible, easy to write, and easy to maintain:

This goal binds together 3 different goals:

	Flexible - whenever possible Lumi should allow choosing from a
variety of options

	Easy to write - Lumi code should be easy to learn and writing code
should be as efficient as possible

	Easy to maintain - It should be easy to find and fix bugs and add new
features, even in large and complex projects

The above goals are bound together because no one is prioritized above the
other and they sometimes contradict. Lumi will do its best to reach all of
them with minimum harm to each one.

Features

	Code generating: Lumi compiler will initially generate C code.
Other “modern machine language” codes may also be generated, such as: Java
(for Android and other devices), Objective-C/Swift (for Apple devices),
JavaScript/WebAssembly (for web application), and more…

	Safe Memory Management - allowing easy trade-off between flexibility
and performance by the user

	Thread Safety - Lumi code is ensured to be thread safe

	Integer Ranges and Overflow Prevention - Lumi code is ensured to be free from integer
overflow and underflow

	Type System - Lumi is strongly typed, and allows variety of typing
styles with different trade-offs between simplicity, generality and
performance

	Exception-like error handling implemented with return values

	Strict coding conventions - all Lumi code should look the same

	Built-in support for productivity features:

	testing and mocking

	documentation

	profiling

Memory Management

Memory should be managed correctly to reach Lumi goal #1, to
reach Lumi goal #2 - it should be done as efficiently as
possible, and to reach Lumi goal #3 - it should be flexible.

This is achieved by combining 3 forms of managing - allowing easy trade-off
between flexibility and performance by the user:

	No Performance Overhead - compile time only reference managing

	More Flexible Reference Managing - with a small performance cost

	Maximum Flexibility - but with performance issues

Note

Below is a non-final suggestion to implement this, it will probably be
developed further over time. See Variables and Constants section for the currently
implemented syntax.

No Performance Overhead - compile time only reference managing

Lumi will allow performance free reference managing that will be done only in
compile time.

Every objects has a single “owner” entity - which is another object or a
stack block. When an owner is destroyed it automatically destroys the
referenced object, unless the ownership was moved to another entity. Stack and
global variables are treated as owners - but they cannot move their ownership.

This has some similarities to the memory management in
Rust [https://doc.rust-lang.org/stable/book/ch04-00-understanding-ownership.html].

Owners can give the reference to multiple temporary “user” entities. Users are
free to read and modify the referenced object - but cannot destroy it or modify
its sub-owners. Users are temporary because they cannot be used after any
object of their type is destroyed, as the compiler cannot guarantee they are
pointing to a legal object any more.

Owners can “borrow” the reference to a single temporary owner that
automatically returns the ownership back to the original owner at the end of
its code block. While borrowing the original owner cannot be used.
The temporary owner has full control over the reference, except the ability to
destroy it.

This is currently implemented, but not fully optimized. In
the future the syntax may be slightly different and look like this:

owner String some-string(String{16}()) ; new owner reference
user-func(user some-string) ; give reference to a user
borrowing-func(temp some-string) ; borrow ownership to a temporary owner
owning-func(owner some-string) ; move ownership, cannot be used anymore

More Flexible Reference Managing - with a small performance cost

Lumi will allow more complex and flexible reference managing that come with a
small and predictable performance cost.

Same as No Performance Overhead - compile time only reference managing with the addition of weak references.
To allow this the owner should be declared as “strong”. It will work the same
way as a regular owner, plus that it can now give “weak” references to any
other entity without limitations. Weak references will automatically test that
the reference is still valid before accessing it.

There are several ways to implement this - but all need some extra memory to
manage the weak references, and some extra processing time to check if the weak
reference is valid. In all implementations the extra overhead is small and
predictable.

This is currently implemented, but in the
future the syntax may be slightly different and look like this:

strong String some-string(String{16}()) ; new strong owner reference
user-func(user some-string) ; give reference to a user
borrowing-func(temp some-string) ; borrow ownership to a temporary owner
weak-func(weak some-string) ; give weak reference
owning-func(strong some-string) ; move ownership

Note

Strong reference counting is currently not supported because it can cause
memory leaks because of reference loops. It may be allowed in the future in
cases where the compiler can ensure no reference loop is possible.

Maximum Flexibility - but with performance issues

Lumi will allow declaring a reference as garbage-collected, which will allow
passing references freely without limitation. The memory will only be cleared
when all “strong” references are destroyed. The garbage-collector must check
and remove reference loops to avoid memory leaks.

To allow this a reference should be declared as “shared”. This reference can
then be passed to other “shared”, “user” or “weak” references.

Implementing a garbage-collector has a significant and unpredictable
performance cost, but some Lumi users may be willing to pay it in some sections
of their project where performance is less important.

This is not implemented yet, but in the future the syntax may look like this:

shared String some-string(String{16}()) ; new shared reference
shared-func(shared some-string) ; copy shared reference
user-func(user some-string) ; give reference to a user
weak-func(weak some-string) ; give weak reference

Conditional and Empty References

As default, (non-weak) references always point to a legal object.
To allow empty references, the reference type must be declared as “conditional”
using the ? sign. Empty value can be set using _ sign.

This is currently implemented, but not fully optimized.
In the future the syntax may be slightly different and look like this:

user String? cond-str ; initialized as empty
cond-str := some-string ; now not empty
cond-str := _ ; now is empty again
if cond-str? ; check if has value
 ; can be used safely here...
else
 ; here we know it's empty...
cond-str!.clear() ; raise error if empty
func-with-cond(user _) ; send empty to function

Thread Safety

Running threads should be safe to reach Lumi goal #1, therefore
the compiler will enforce it.

This page explains a first suggestion to implement this.

The default approach - complete data isolation

The compiler takes care that each data is only accessible from a single
thread - creating a complete isolation of data between threads. Global data
will be duplicated for each thread (probably using “thread local” mechanism).
This mean no data sharing is possible - ensuring thread safety.

This is the default approach on all data unless one of the thread data sharing
mechanism described below is used.

Sharing data between threads

Constant and immutable data

Every compile-time constant or run-time immutable data can be safely shared
between threads. The compiler will ensure no thread can modify these data.

Atomic operations

Based on the platform, atomic types will be provided, and all operations on an
atomic item will be atomic.

Messaging

It will be possible to send messages between threads, the data on the message
will be copied from one thread to another in a safe manner taken care by the
compiler.

Built-in thread-safe data structures

Various built-in thread-safe data structures will be provided that can be used
to share data between threads.

Automatic locks

It will be possible to mark data as thread-shared, and the compiler will
automatically protect access to this data using various lock types.

Integer Ranges and Overflow Prevention

As part of Lumi goal #1 the compiler will enforce code that is
without any integer overflow (or underflow).

Integer Ranges

In Lumi all integers are declared with explicit range
Int{minimum:maximum} and the compiler enforces that it will always contain
values inside this legal range.

For example, the compiler will not allow these assignments:

func compute(Int{0:20} x)->(Int{-10:10} y)
 y := 20 ; error - clearly out of range
 y := x ; error - may be out of range

Assigning a constant or an integer with overlapped range are naturally legal,
for example:

func compute(Int{-10:10} x)->(Int{-20:20} y)
 y := 10 ; legal - inside legal range
 y := x ; legal - all legal values of x are overlapped by y range

Integer Arithmetic

The result of any arithmetic operation is an integer with a new range based on
the operator. For example:

func compute(Int{6:12} x, Int{0:100} y)
 x + y ; return range is Int{6:112}
 x - y ; return range is Int{-12:94}
 x * y ; return range is Int{0:1200}
 x div y ; return range is Int{0:16}
 x mod y ; return range is Int{0:11}

Compile Time Overflow Prevention

The compiler will not allow operation that may result in an overflow (or and
underflow). For example:

func compute(Uint64 a, Uint64 b)
 a + b ; error - potential overflow
 -a ; error - potential underflow

Run-Time Overflow Checking

It is possible to check for an overflow in run-time using ! or ?
together with one of + - * operators. For example:

~~~ raises an error when overflow detected ~~~
func ! raising-compute(Uint64 x, Uint64 y)->(Uint64 z)
    z := x +! y
    z := x -! y
    z := x *! y

func handling-compute(Uint64 a, Uint64 b)->(Uint64 z)
    if-error z := x +? y
        z := 0
    if-error z := x -? y
        z := 0
    if-error z := x *? y
        z := 0








Efficient Native Wraparound

Utilizing native overhead-free wraparound is supported by using wraparound
keyword. The result of native wraparound is naturally limited only for the
ranges that native wraparound is guaranteed to be supported: Uint8 Uint16
Uint32 Uint64 (Int{0:255} Int{0:65535} Int{0:4294967295}
Int{0:18446744073709551615}). For other ranges wraparound must be done
manually using ((value - min) mod (max - min + 1)) + min for example.

wraparound can be used as a single unary operator before assignment or
together with one of += -= *= assignment operators:

func compute(Uint32 x)->(Uint32 y)
    y := wraparound x + 1
    y := compute(wraparound x - 1)
    y wraparound+= 1
    y wraparound-= 1
    y wraparound*= 1





The result range of using wraparound as above is the same as the target
assignee range (Uint32 in the examples above). This means that the assigned
range must always be one of Uint8 Uint16 Uint32 Uint64.

wraparound can also be used together with + - * operators:

func compute(Int{0:1000000} x, Uint64 y)->(Uint32 z)
    z := x wraparound+ y
    z := x wraparound- y
    z := x wraparound* y





The result range of using wraparound as above is the minimal from Uint8
Uint16 Uint32 Uint64 that overlaps the left operand (Uint32 from x in
the examples above). This means that the left operand can be any unsigned
range.




Clamping

Clamping allows shrinking an integer range to a smaller range Int{min:max}
by converting any value larger than max to max and smaller than
min to min. This can be done automatically using clamp keyword.
Clamping is not overhead-free because the checking and converting must be done
at run-time.

clamp can be used as a single unary operator before assignment or
together with one of += -= *= assignment operators:

func compute(Uint32 x)->(Uint32 y)
    y := clamp x + 1
    y := compute(clamp x - 1)
    y clamp+= 1
    y clamp-= 1
    y clamp*= 1





Using clamp as above will clamp the result to the range of the target
assignee (Uint32 in the examples above).

clamp can also be used together with + - * operators:

func compute(Uint32 x, Uint64 y)->(Uint32 z)
    z := x clamp+ y
    z := x clamp- y
    z := x clamp* y





Using clamp as above will clamp the result to the range of the left operand
(Uint32 from x in the examples above).

On assignment it is possible to raise an error instead of clamping using !
or ? together with clamp. Whenever a value is too small or big for the
assignee target range - instead of setting min or max an error is raised.
For example:

~~~ raises an error when clamping ~~~
func ! raising-compute(Uint32 x)->(Uint32 y)
 y := clamp! x + 1
 y := raising-compute(clamp! x - 1)

func handling-compute(Uint32 x)->(Uint32 y)
 if-error y := clamp? x + 1
 y := 0

Sequences Index Integer Range

planned - not supported in TL5

It is planned to support a special range that is bound to a sequence and can
only hold values that are legal indices to the sequence.

It may look like this:

func example(Array{Char} array)->(Char result)
 var Int{array} index
 result := array[index] ; no need to check index at run-time

Type System

Lumi is strongly typed, which means that:

	Each symbol is statically bound to one specific type and can only hold data
from this type.

	Type correctness is enforced in compile time by the compiler.

Lumi has a variety of built-in primitive and complex types,
and allows adding user defined types in a variety of typing styles. All these
allow writing code with different trade-off between simplicity, generality and
performance, and adapting different programming paradigms.

Typing Styles of User Defined Types

All user defined types in Lumi are built based on two basic typing styles:

	Static Structures

	Dynamic Interfaces

These can be combined to build more complex typing styles:

	Extending Types

	Classes - Binding Dynamic Interfaces and Static Structures

	Parameterized Types

	Embedding a Dynamic Reference in a Static Structures

	Automatic Dynamic Interfaces

Static Structures

Typing style for the static structure syntax.

This is the most basic, simple and efficient typing style. A static structures
(or “structure” in short) is simply a record that groups together multiple
variables of any kind under one type.

Structures may contain methods. Methods are functions with an implicit first
parameter named self that is a reference to an instance of the type.

It is possible to declare constants and global variables inside a structure.
They are not part of the structure record, but are like normal constants and
global variables that are named under the type name-space.

Dynamic Interfaces

Typing style for the dynamic interface syntax.

Dynamic interfaces are the basics of dynamic dispatch in Lumi. A dynamic
interface (or “dynamic” in short) groups together multiple dynamic members that
will be implemented differently for multiple objectives. Dynamics can be
implemented for a specific structure, or purely
without any binding.

Dynamic members are usually methods, but variables and references of any type
can also be dynamic members - where each implementation initializes them with a
different constant value.

Dynamics are always used as references and cannot be allocated because they
have no structure. A dynamic references can be set with any type that
implements the dynamic.

“Implementing” a dynamic means implementing each dynamic method and
initializing each dynamic variable with a constant value.

Dynamics standard method dispatch is dynamic. This means that when an
implementing type is passed to a dynamic reference, any method called on the
dynamic reference will use the implementing type implementation.

Dynamics may contain constants and global variables, they are not dynamic
members and behave exactly as global members in structures - they are just global elements under the type
name-space.

Dynamics cannot have static fields, but may contain static methods. They are
also not dynamic members and behave exactly as methods in
structures - they must be implemented directly in
the dynamic, and their dispatch is static.

Extending Types

Types can be extended by adding functionality to some base types.

Structures can extend other structures. An
extending structure contains all members from all base structures, plus its own
members. An extending structure can override methods of a base structure, other
members may not be overridden.

Structures method dispatch is static. This means that when an extending
structure is passed to a base structure reference, any method called on the
base reference will use the base structure implementation even if the extending
structure overrode that method.

Dynamics can extend other dynamics. An extending
dynamic contains all members from all base dynamics, plus its own members.

An extending structure may override any dynamic implementation of its base
structure. Nevertheless, if an extending structure reference is passed to a
base structure reference, and then the base structure reference is passed to a
dynamic reference, any method call on the dynamic reference will use the base
structure implementation because structure dispatch is static.

Classes - Binding Dynamic Interfaces and Static Structures

Typing style for the class syntax.

Sometimes binding together static structures and
dynamic interfaces under a single type is useful,
mainly to adapt the OOP (object oriented programming) paradigm. A type with
this kind of binding is also known as a “class”.

Classes may be ad-hock binds between already declared structures and dynamics,
or declared as classes up-front in a type definition. Types declared as classes
may have both static and dynamic members, and the compiler creates an implicit
static structure and an implicit dynamic interface - each with its respected
members. The compiler then creates the class as a bind between these both
implicit types.

Classes may extended any number of structures, dynamics, and other classes.
The extending class implicit structure extends all base structures and the
implicit structures of all base classes. Similarly, the extending class
implicit dynamic extends all explicit and implicit base dynamics.

Classes may also implement dynamics. Any implementation method of the dynamic
is also dynamic in the class. As opposed to structures, if an extending
class reference is passed to a base class reference, and then the base class
reference is passed to a dynamic reference, any method call on the dynamic
reference will use the the extending class implementation because class
dispatch is also dynamic.

Parameterized Types

Typing style for the parameterized type syntax.

It is possible to declare types with parameters to avoid code duplication of
generic types. Each parameter can be either static or dynamic.

Static Parameters

Static parameters are like templates - for each different usage of any static
parameter a new type will be automatically generated. Static parameters can be
type names, or constant values of a specific type.

Dynamic Parameters

Dynamic parameters represent a generic type and only accept type names.

The main advantage of dynamic parameters is that - as oppose to static
parameters - different usage of it will not generated a new type.

The disadvantage is that dynamic parameters can only be used as abstract
references, as the same code handles references of different types with unknown
structure.

Embedding a Dynamic Reference in a Static Structures

Typing style for the embedded dynamic reference syntax.

For some memory optimization scenarios, it is better if a dynamic reference
of a class will be implemented only with one C pointer, and the dynamic
structure reference will be embedded inside the type static structure (as done
in C++).

Lumi will support this, but the exact implementation is still under planning.

Automatic Dynamic Interfaces

This is an experimental typing style idea that will allow automatic creation
and implementation of dynamic interfaces based on the actual usage of a
reference.

For each reference typed as Auto the compiler will automatically create a
dynamic interface based on the methods called on this reference. Any type that
implements the same methods used by the reference can be assigned to it, and an
implementation of the dynamic interface will be automatically created by the
compiler. For example:

; a dynamic interface with "example" method will be created buy the compiler
; and used as the parameter actual type
func auto-example(user Auto automatically-typed-dynamic-reference)
 automatically-typed-dynamic-reference.example()

struct SomeStruct
 func some-method()

var SomeStruct some-item
; implementation to the automatically created dynamic interface will be
; created by the compiler that uses "SomeStruct.example" method as the
; implementation to the "example" dynamic method
auto-example(user some-item)

This feature is an experimental idea because it’s unclear whether it is a good
idea, and there may be some edge cases that will make it hard to implement.

General Syntax Highlights

	blocks are declared with indentation (as in Python)

	strict white-spacing:

	tabs are syntax errors

	indentation is exactly 4 spaces

	no spaces in line end

	extra indentation for line breaking is exactly 8 spaces

	exactly one space around operators

	file must end with a single newline

	in general, any whitespace in the syntax must be used exactly

	strict naming conventions:

	the default for everything is lowercase-only-with-hyphens
(a.k.a “kebab-case”)

	types are FirstLetterUppercase (a.k.a “CamelCase)

	compile time constants are UPPERCASE-ONLY-WITH-HYPHENS (a.k.a
“FAT-KEBAB-CASE”)

TL[number] - Temporary Lumi Language

Lumi language development is done in an iterative style, where in each
step a compiler is written to a temporary Lumi language - “TL” in short - which
is a partial (or different) syntax of the final Lumi language.

These temporary Lumi languages are marked as “TL[number]” where “number is the
iteration step number. “TL0” is the initial compiler temporary Lumi language,
the next iteration is TL1 and so on…

Latest Version - TL5

The Lumi language is still a work in progress and the final syntax is not
decided yet. The latest working compiler is for Temporary Lumi 5 (TL5) syntax,
and this guide will describe it, and the differences between it and the planned
final Lumi syntax.

The final Lumi syntax is still under planning, so this guide refers only to the
current planning state of the final syntax. Changes will happily be made based
on coding experience and suggestions.

Basic Syntax

Comments

In TL5 Single line comments start with ;, multi-line
comments start with [;, and end with ;].
Comments that are not in line start are not supported yet - but will be
supported in the final syntax.

; single line comment
[; <-- multi-line comment start
multi
line
comment
multi-line comment end --> ;]
var Uint32 x ; not supported yet :(

Some suggest to change this in the final syntax to be as in C with //,
/* and */.

Documentation

Documentation have their own dedicated syntax: they start and end with ~~~.
Documentation must be placed at line start and may be single or multi-line.

In TL5 documentation are treated as comments. In the final
syntax they must come before the element they are documenting, they could be
used dynamically in the code, and would be used to automatically generate
external documentation.

~~~ single line documentation ~~~
func documented-function()
    ; do stuff

~~~  <-- multi-line documentation start
multi
line
documentation
multi-line documentation end --> ~~~
func another-documented-function()
 ; do stuff

Operators

	assignment: :=

	arithmetic: +, -, *, div, mod, clamp, wraparound

	assignment and arithmetic: +=, -=, *=

	bitwise: bnot, bor, band, xor, shr, shl

	relational (arithmetic): =, <>, <, >, <=, >=

	relational (referential): is, is-not, ?

	logical: not, or, and

	miscellaneous: ., [], [:], (), :=:

Any operator may be followed by a line brake with additional indentation
of exactly 8 spaces:

x := 3 +
 4
y :=
 3 + 4
z :=
 3 +
 4

Operator Precedence

	. [] () ?, left-to-right

	bnot

	- +, * div mod, bor band xor shr shl, left-to-right
[1]

	= != > < >= <= is is-not, left-to-right
[2]

	not

	or, and, left-to-right [1]

	clamp wraparound, only one allowed

	:= += -= *= :=:, only one allowed

[1] cannot combine operators from different sub-groups of this group, they
must be separated using (), for example a + b * c is not legal and
should be changed to a + (b * c)

[2] multiple operators from this group combined will be separated with
and operator, for example, a < b < c < d is treated as a < b and
b < c and c < d

Modules

In TL5 each Lumi file is declared under a single module,
multiple files may be declared under the same module.

The first line of each file must declare its module using the module
keyword:

module my-module-name

Only a single documentation block can come before it.

Using any item of another module must come after the other module prefix:

var other-module.SomeType variable
other-moudle.function(user variable)

In the final syntax modules and libraries support will be greatly extended -
the exact syntax is still under planning.

Built-in Types

Integer

	
class Int(minimum-value, maximum-value)

	
	Parameters

	
	minimum-value – (optional) the minimum legal value (inclusive),
default is 0

	maximum-value – the maximum legal value (inclusive)

An integer that can only hold a range of values between its minimum and
maximum (inclusive), enforced by the compiler. Obviously “minimum-value”
should be equal or smaller than “maximum-value”.

For example: Int{10:20}
can only hold numbers between 10 and 20.

If only one parameter is given it is treated as the maximum and the
minimum is automatically 0.

For example: Int{100} can only hold
numbers between 0 and 100.

If the minimum is negative the integer is consider “signed”, else it is
“unsigned”.

The actual representation of an integer in the memory is the
minimal possible from 8,16,32,64 bits based on the limits. This mean that
only ranges that fit in uint64_t or int64_t are supported:
-9223372036854775808 to 9223372036854775807 for signed
integer, and 0 to 18446744073709551615 for unsigned.

The default value of an uninitialized integer is 0 if it is within its
legal range, otherwise the integer must be manually initialized.

	Aliases for common ranges:
	
	Uint8 for Int{0:255}

	Sint8 for Int{-127:127}

	Uint16 for Int{0:65535}

	Sint16 for Int{-32767:32767}

	Uint32 for Int{0:4294967295}

	Sint32 for Int{-2147483647:2147483647}

	Uint64 for Int{0:18446744073709551615}

	Sint64 for Int{-9223372036854775807:9223372036854775807}

	Supported integer literals:
	
	decimal: 70695

	binary: 0b100101

	octal: 0175

	hexadecimal: 0xa30eb9f6

	negative integer: - before any positive integer literal: -23

A complete guide to integer range management is in Integer Ranges and Overflow Prevention.

	
str(user String text)

	write into text the integer converted to string in decimal

	Raises

	if text is too short to store the number

Infinitely Long Integer

planned - not supported yet in TL5

	
class Long

	A signed integer that can be infinitely long (practically limited by
the system memory). Automatically allocates heap memory to store the number.
Is dramatically less efficient that a normal integer.

Boolean

	
class Bool

	A boolean value that can only be a true or a false
constant.

Constants:

	
Bool true

	

	
Bool false

	

Character

	
class Char

	A single Unicode code-point, which is the same as Int{1114111}.

Character literal are surrounded with ' characters: 'a'. Special
characters can be written with \ escape character as in C: \' \" \? \a
\b \f \n \r \t \v \\.

Byte

	
class Byte

	A single memory byte value.

Byte is treated as Int{255}.

Real Number

planned - not supported yet in TL5

	
class Real

	Floating point real number, same as float in C.

Real number literal is a decimal number with . character in the middle,
with optional exponential suffix: 2.4, -0.3, 4.0, 2.34e2,
-5.678e-12.

Function

	
class Func(arguments)

	Holds (pointer to) a function.

	Parameters

	arguments – the function input and output arguments

For example: Func{()}, Func{(copy Uint32 in)},
Func{()->(var Uint32 out)} ,
Func{(copy Uint32 in)->(var Uint32 out)}.

Array

	
class Array(length, subtype)

	Sequence of any typed item with static length.

	Parameters

	
	length – array static length and the actual allocation size

	subtype – the type of each item in the array

For example: Array{12:Uint32}, Array{6:String{16}}.

Array references should be declared without the length parameter:
just Array{Uint32} or Array{String} for example.

Accessing a single item can be done using array[index].

Note

If the index can be out of range it is checked at run-time and an error
may raise. In such case the ! warning sign must be used if error is
to be propagated: array[index]!.

It is possible to extract a sub-array from an array by slicing:
array[start-index:sub-array-length]. This will not copy the array but
return an array reference that points to the original array.

	
length()->(var Uint32 length)

	return (static) length of the array

Buffer

	
class Buffer(length)

	Alias for an Array with Byte items.

	Parameters

	length – length of the buffer and the actual allocation size

For example: Buffer{5}, Buffer{256}.

Buffer literals are hexadecimal strings surrounded by ` characters:
`4a0069ff3487beef2649`.

String

	
class String

	Holds a legal UTF-8 string with dynamic length. The compiler ensures
that the last character is a null-terminator ('\0').

String literals are strings surrounded by " characters: "I am a string
literal". Escape characters can be used.

String literals may contain line breaks, with additional indentation
of exactly 8 spaces. It is treated as \n, or ignored if \ is used
before it:

; the same as "line\nbrake"
s := "line
 break"

; the same as "linebrake"
s := "line\
 break"

String is currently not implicitly converted to Array{Byte} when needed.

	
length()->(var Uint32 length)

	returns current (dynamic) string length, not counting the null-terminator

	
new(user Buffer value)

	initialize this string with a copy of value

	Raises

	if not enough memory

	
clear()

	make this string empty

	
equal(user Buffer other)->(var Bool is-equal)

	return whether this string is exactly equal to other

	
get(copy Uint32 index)->(var Char value)

	return character at place index

	Raises

	if index is out of range

	
set(copy Uint32 index, copy Char value)

	set character at place index to value

	Raises

	if index is out of range

	
append(copy Char character)

	append character to this string end

	Raises

	if has no room for another character

	
concat(user Buffer other)

	concatenate other to this string end

	Raises

	if has no room for other

	
concat-int(copy Sint64 number)

	covert number to string and concatenate it to this string end

	Raises

	if has no room for number string

	
find(user Buffer pattern)->(copy Uint32 index)

	return index of first occurrence of pattern in this string, return
this string length if pattern not found

	
has(copy Char character)->(var Bool has)

	return whether this string contains character

Files

	
class File

	Basic type for managing files, is extended by these types:

	FileReadText

	FileReadBinary

	FileWriteText

	FileWriteBinary

	FileReadWriteText

	FileReadWriteBinary

	
FileReadText(user String file-name)

	open file-name for read only in textual mode

	Raises

	if file opening failed

	
FileReadBinary(user String file-name)

	open file-name for read only in binary mode

	Raises

	if file opening failed

	
FileWriteText(user String file-name, copy Bool append)

	open file-name for write only in textual mode

file is created if it does not exist

if append is true all writes will be appended to the file end

	Raises

	if file opening failed

	
FileWriteBinary(user String file-name, copy Bool append)

	open file-name for write only in binary mode

file is created if it does not exist

if append is true all writes will be appended to the file end

	Raises

	if file opening failed

	
FileReadWriteText(user String file-name, copy Bool append, copy Bool create)

	open file-name for read and write in textual mode

if append is true:

file is created if it does not exist

all writes will be appended to the file end

create is ignored

else, if create is true file is cleared of data if exists, or created
if it does not exist

	Raises

	if file opening failed

	
FileReadWriteBinary(user String file-name, copy Bool append, copy Bool exist)

	open file-name for read and write in binary mode

if append is true:

file is created if it does not exist

all writes will be appended to the file end

create is ignored

else, if create is true file is cleared of data if exists, or created
if it does not exist

	Raises

	if file opening failed

	
close()

	close this file, does nothing if this file is already closed

	Raises

	if closing failed

	
tell()->(var Sint64 offset)

	return current position of the file

	Raises

	if getting offset failed

	
seek-set(var Sint64 offset)

	set file position to offset relative to file start

	Raises

	if setting offset failed

	
seek-cur(var Sint64 offset)

	set file position to offset relative to the current position

	Raises

	if setting offset failed

	
seek-end(var Sint64 offset)

	set file position to offset relative to file end

	Raises

	if setting offset failed

	
flush()

	flush any buffered written data to the file

	Raises

	if flush failed

	
get()->(var Char value, var Bool is-eof)

	only available in FileReadText and FileReadWriteText

read one character from this file into value or set is-eof to
true if end-of-file reached

	Raises

	if read failed

	
get()->(var Byte value, var Bool is-eof)

	only available in FileReadBinary and FileReadWriteBinary

read one byte from this file into value or set is-eof to
true if end-of-file reached

	Raises

	if read failed

	
getline()->(user String line, var Bool is-eof)

	only available in FileReadText and FileReadWriteText

read one line from this file into line or set is-eof to
true if end-of-file reached

new-line character is not added to line end

	Raises

	if read failed or line is too short to store the line

	
read(user Array{Byte} data)->(var Uint32 bytes-read)

	only available in FileReadBinary and FileReadWriteBinary

read bytes from file to data up to the its length, set in
bytes-read the number of actual read bytes

	Raises

	if read failed

	
put(copy Char value)

	only available in FileWriteText and FileReadWriteText

write value character to this file

	Raises

	if writing failed

	
put(copy Byte value)

	only available in FileWriteBinary and FileReadWriteBinary

write value byte to this file

	Raises

	if writing failed

	
write(user Array{Char} data)->(var Uint32 written)

	only available in FileWriteText and FileReadWriteText

try write all data characters to this file, set in written the
number of actual written characters

	Raises

	if writing failed

	
write(user Array{Byte} data)->(var Uint32 written)

	only available in FileWriteBinary and FileReadWriteBinary

try write all data bytes to this file, set in written the number
of actual written bytes

	Raises

	if writing failed

sys Module

	
Array{String} sys.argv

	holds program arguments

	
FileReadText sys.stdin

	can be used to read from the standard input stream

	
FileWriteText sys.stdout

	can be used to write to the standard output stream

	
FileWriteText sys.stderr

	can be used to write to the standard error stream

	
sys.print(user String text)

	print text to the standard output stream, same as calling
sys.stdout.write

	Raises

	if writing failed

	
sys.println(user String text)

	print text appended with new-line character to the standard output
stream

	Raises

	if writing failed

	
sys.getchar()->(var Char character, var Bool is-eof)

	read one character from the standard input stream into value or set
is-eof to true if end-of-file reached, same as calling
sys.stdin.get

	Raises

	if read failed

	
sys.getline(user String line)->(var Bool is-eof)

	read one line from the standard input stream into line or set is-eof
to true if end-of-file reached, same as calling
sys.stdin.getline

new-line character is not added to line end

	Raises

	if read failed or line is too short to store the line

	
sys.exit(copy Sint32 status)

	terminates execution of the program immediately with status as the
exit status value

calls C exit function

	Raises

	if exiting failed

	
sys.system(user String command)->(var Sint32 status)

	execute command by the host command processor and return the return
status of the command

calls C system function

	Raises

	if command fails to execute

	
sys.getenv(user String name, user String value)->(var Bool exists)

	set into value the value of the environment variable name, or set
exists to false if it does not exist

Variables and Constants

In TL5 the Lumi memory management
is mostly implemented, excluding the
third management form from the 3 planned.

Compile-Time Constants

In TL5 only global integer compile-time constants are
supported. The final Lumi syntax is planned to support constants from all
types, and allow definition of constants inside the name-space of a specific
type.

Integer compile-time constants are declared in TL5 by:

const Int CONSTANT-NAME 12

Here 12 is an example constant value with range Int{12:12}. The
constant value can be any constant expression, which may include:

	integer numbers

	other integer constants

	enumerators

	integer operators, where the operands are constant expressions

Enumerators

Enumerators are a set of constant symbols that are treated as
integer compile-time constants. The first symbol is allocated a value of 0,
the second is 1 and so on…

In TL5 enumerators can only be declared in the global scope.
The final Lumi syntax is planned to support enumerators under a specific type,
will allow definition of specific values for the enumerator symbols, and will
generate automatic conversion functions between symbol names and values.

Enumerators are declared in TL5 by:

enum EnumeratorName
 FIRST-SYMBOL-NAME
 SECOND-SYMBOL-NAME
 THIRD-SYMBOL-NAME

Using an enumerator is done by EnumeratorName.SYMBOL-NAME.

The amount of values is defined by a special length value, for example
EnumeratorName.length is 3.

Primitive Variables

Primitive variables are declared using var keyword:

var Int{100} integer-variable
var Int{10:20} with-initialization(copy 12)

If no explicit initialization value given - primitive values are initialized
with each type’s default initialization value:

	Int : 0 (if in range)

	Bool : false

	Char : \0

	Byte : 0x00

	Real : 0.0

	Func : empty (_)

References

References are declared using the wanted memory access keywords:

	owner: simple owner reference

	user: simple user reference

	temp: simple temporary owner reference

	strong: reference counted strong reference

	weak: reference counted weak reference

owner String string-owner-reference
user Array{Uint32} user-reference-with-initialization(user some-int-array)
temp String temporary-owner-reference
strong String string-strong-reference
weak Array{Uint32} weak-reference-with-initialization(weak some-int-array)

References must be assigned with a value before used.

For primitive type references the pointed value can be accessed using a special
value named field:

int-reference.value := 4

Conditionals

Conditional references are declared by appending ? character in type end:

owner String? conditional-owner-reference
user Array?{Uint32} conditional-array-with-initialization(user some-int-array)

The _ sign can be used to represent an empty reference:

conditional-reference := _ ; setting the reference to be empty
func-with-conditional-argument(user _) ; passing empty to a function

If no explicit initialization value given - conditional references are by
default initialized as empty (_).

When a conditional reference is used it is checked at run-time to not be empty.
If it is - an error is raised.

Note

In such case the ! warning sign must be used if error is to be
propagated: conditional-reference!.field

Weak References

Weak references may point to outdated data that was removed in the past.
Therefor, when a weak reference is used it is checked at run-time to not be
outdated. If it is - an error is raised.

Note

In such case the ! warning sign must be used if error is to be
propagated: weak-reference!.field

Comparisons

Comparing references by-reference is done using the is and is-not
operators.

the ? operator can be used to check if a reference is usable: not empty and
not an outdated weak reference. To explicitly check for emptiness and not for
being outdated of a reference that is both conditional and weak is and
is-not operators can be used with _ as operand.

if first-reference is second-reference
 ; both references reference to the same object, or both are empty
if first-reference is-not second-reference
 ; both references do not reference to the same object
if reference?
 ; reference is usable - not empty and not outdated
if not reference?
 ; reference is not usable - it is empty or outdated
if reference is _
 ; reference is empty
if reference is-not _
 ; reference is not empty, but may or may not be outdated

String and Buffer Literals

String and buffer literals are allocated in the global
data section. In the scope they are used they are treated as user
access references to the global data.

user String string(user "a string literal")
user Buffer buffer(user `baffdaca`)

Static Allocation

Static allocation is done using var or s-var keywords:

var String{256} string-static-allocation
s-var Array{34:Uint32} static-strong-int-array!

Note

s-var initialization may fail - the ! warning sign must be used
if error is to be propagated

Doing this in the global scope will allocate the data in the process global
data section. Doing this in a function scope will allocate the data in the
stack.

Statically allocated variables cannot pass their ownership to owner
references.

Dynamic Allocation

Dynamic allocation is done by using the type as a function:

string-owner-reference := String{256}()!
array-strong-reference := Array{34:Uint32}()!

Note

dynamic allocation may fail - the ! warning sign must be used
if error is to be propagated

It’s probably a good idea to store the returned object in an owner
reference, otherwise it will be deleted in the end of the block.

Functions

Summary

Function are declared using the func keyword

func func-name(copy Uint32 input-argument)->(var Uint32 output-argument)
 ; function implementation...

Functions are called using their name:

func-name(copy 4)->(var some-int)

Arguments

First input arguments (a.k.a “parameters”) are written inside (...). If the
function has no input arguments an empty () should be used.

If the function has output arguments (“outputs” in short) they are written
second inside a different (...) after a -> symbol with no whitespace.
Multiple outputs are supported.

In function deceleration each argument must be declared with access type
name trio. In function calling only access name duo is needed.
See Access explanation below.

A new line can be placed before any argument access, with additional
indentation of exactly 4 spaces:

func split-arguments0(copy Uint32 x, copy Uint32 y)->(
 var Uint32 z, var Uint32 w)

func split-arguments1(
 copy Uint32 x, copy Uint32 y)->(var Uint32 z, var Uint32 w)

func split-arguments2(
 copy Uint32 x, copy Uint32 y)->(
 var Uint32 z, var Uint32 w)

func split-arguments3(
 copy Uint32 x,
 copy Uint32 y)->(
 var Uint32 z,
 var Uint32 w)

Access

An “access” defines the memory access of the argument. It can be one of:

copy parameter:

	the parameter is a new memory copy of the called argument

	changes to the parameter will not change any caller variable

	any expression can be given

var output:

	the parameter is a reflection of an actual variable

	changes to the parameter will also change the caller variable

	only a writable value can be given

user, owner, temp, strong or weak parameter:

	the argument is a reference to an object

	changes to the reference itself will not change the called reference

	changes to the object will change the called object

	any expression can be given

	user or weak means the parameter is a simple reference

	owner or strong means the caller has passed the ownership of the
referenced object to the function, and the object will be deleted in the
function end if the ownership is not passed in the function body

	temp means the caller has temporally passed the ownership of the
referenced object to the function, and the ownership will be returned after
function end and cannot be deleted or permanently passed forward by the
function

user, owner, strong or weak output:

	the parameter is a reflection of an actual reference

	changes to the reference itself will also change the called reference

	only a writable value can be given

In TL5 copy and var are not yet supported for
complex types.

In the planned final syntax this will be extended, and the access may be
omitted in a default usage.

Return and Output

In TL5 output is written by setting a value to an output
argument:

func example()->(var Uint32 first-output, user String second-output)
 first-output := 4
 second-output := String{16}()

A return statement can be used to stop the function in the middle:

func example(copy int x)
 if x < 0
 return
 ; do something

In the final syntax this may be possible:

func example()->(var Uint32 first-output, owner String second-output)
 return 4, String{16}()

Error Handling

Raising an error can be done using the raise statement. Functions that
may raise an error must be marked with !:

func ! example()
 raise!

In TL5 an optional string expression can be raised:

func ! example()
 raise! "error message"

Error Propagation

Unless caught, raised error will propagate to the caller function, up until the
main function - where uncaught errors will stop the execution of the program,
print the raised error message if given, and print a call traceback.

In the function code whenever an error may be raised and propagated to the
caller - the ! warning sign must be added. A functions that may raise an
error must also add the ! warning sign to its deceleration.

Error Catching

A local error can be handled using if-ok or if-error:

if-ok x := array[3]
 ; no error raised
else
 ; index out of bound handling

if-error x := array[4]
 ; index out of bound handling
else-if-ok x := array[6]
 ; no error raised
else-if-error x := array[5]
 ; index out of bound handling
else
 ; no error raised

Note

if-ok must be followed by else to ensure error is not ignored

A try statement will catch an error raised inside it and break the
execution of the rest of the block. The error will be ignored unless try is
followed by a catch statement. The code under the catch statement will
only run if the above try statement caught an error.

try
 ; do something that may raise errors
catch
 ; do some error handling

Calling a Function

When calling a function the access of each argument must be written:

example(copy primitive-input, user reference-input)->(
 var primitive-output, owner owner-output)

If the function may raise an error and the caller propagates the error - !
warning sign must be used:

raising-example(copy input)->(var output)!

User Defined Types

As explained in Type System, Lumi allows variety of typing styles for
creating user defined types.

In TL5 only basic structures and
classes are supported.

User defined types behave like built-in complex types with references, static allocation and dynamic
allocation.

Static Structures

Syntax for the static structure typing style.

In TL5, structures may not contain string or array
variables, only their respected references. It will be supported in the final
Lumi syntax.

Structures are declared using the struct keyword:

struct ExampleStruct
 var Uint32 integer-variable
 user String string-reference

Members of struct can be accessed using . operator:

var ExampleStruct struct-variable
struct-variable.integer-variable := 3
struct-variable.string-reference := "some string"

Structures are implemented in C as simple C structures. Structure references
are implemented as pointers to the C structure.

Global Members

This is not supported yet in TL5.

Global members are declared under the type scope:

struct ExampleStruct
 const Uint32 GLOBAL-CONSTANT(12)
 global var Uint32 global-variable

Outside the type definitions they can only be accessed with the type name as
prefix:

some-integer := ExampleStruct.GLOBAL-CONSTANT
ExampleStruct.global-variable := 5

Methods

Methods are declared as normal functions, except they are
declared inside the type scope, and the self parameter should not be
declared, instead, its access is declared before the function name.

Inside the
method implementation self keyword can be used to access the implicit self
parameter. Constants and global variables of the type can be accessed using
global keyword.

struct ExampleStruct
 var Uint32 integer-variable

 const Uint32 GLOBAL-CONSTANT(12)
 global var Uint32 global-variable

  ~~~ "self" access is "user" ~~~
  func user method(copy Uint32 num)
      self.integer-variable := num + global.GLOBAL-CONSTANT
      global.global-variable := num





It possible to split the function deceleration from its implementation. In this
case the function deceleration should be followed by _.

struct ExampleStruct
    func user method(copy Uint32 num) _

func user ExampleStruct.method(copy Uint32 num)
    ; implementation...





There are two ways to call a method:

instance.method(copy 4)  ; OOP style
ExampleStruct.method(var instance, copy 4)  ; functional style








Constructor Method

If possible, structure members are automatically initialized to their default
value on construction. This can be extended by defining a “constructor” method
for the structure. This method will be called on every instance construction
after the default initialization. A constructor is declared  with a dedicated
name new.

struct ExampleStruct
    new() _

func ExampleStruct.new()
    ; custom initialization





A constructor cannot have outputs, and if it has parameters - they must be
given on every object creation:

struct ExampleStruct
   var Uint32 integer-variable
   owner String string-reference

   new(copy Uint32 x, owner String s)
       self.integer-variable := x
       self.string-reference := s

func usage()
    var ExampleStruct variable(copy 4, owner String{12}(user "some string"))
    owner ExampleStruct reference := ExampleStruct(copy 4,
           owner String{12}(user "some string"))





Structures that have members without a defined default value must implement a
constructor. The constructor must also directly initialize these fields.
Members without a defined default value are:


	non-conditional references


	integers that 0 is not a legal value of their range


	variables of types with a constructor







Destructor Method

A “destructor” method can also be defined for a structure. This method will be
called just before any object destruction. A destructor is declared as a normal
method with a dedicated name cleanup.

struct ExampleStruct
    cleanup() _

func ExampleStruct.cleanup()
    ; destruction code





A destructor cannot have any kind of arguments.

In TL5 destructors cannot raise errors - but it may be
supported in the future.


Note

Lumi Automatically deletes any memory allocated in the structure and calls
the cleanup function of all members and base classes - there is no need to
do it manually






Extending Structures

In TL5 a structure may only extend one other structure.

struct ExtendingStruct(BaseStruct, OtherBaseStruct)
    var Uint32 additional-field





The extending structure may be used in any place one of its base structures is
expected:

owner BaseStruct base-struct := ExtendingStruct()





The extending structure may overwrite a base method, the overwriting method
arguments access and type must be identical to the base overridden method.

struct BaseStruct
    func method(copy Uint32 num)
        ; implementation...

struct ExtendingStruct(BaseStruct)
    func method(copy Uint32 num)
        ; other implementation...





An overwriting function can call the overwritten function using base
keyword. Other overwritten methods can be called using base.other-method.

struct ExtendingStruct(BaseStruct)
    func method(copy Uint32 num)
        base(copy num)
        base.other-method()





Example for the static dispatch of structures:

var ExtendingStruct extending-struct
user BaseStruct base-struct(user extending-struct)
extending-struct.method(copy 4)  ; will call ExtendingStruct.method
base-struct.method(copy 4)  ; will call BaseStruct.method
BaseStruct.method(var extending-struct, copy 4)  ; will call BaseStruct.method










Dynamic Interfaces

Syntax for the dynamic interface typing style.

Dynamic interfaces (or “dynamics” in short) are declared using the dynamic
keyword:

dynamic ExampleDynamic
    func dynamic-method(copy Uint32 num)
    func another-method()->(var Uint32 result)
    var Uint32 dynamic-variable





Dynamic variables are not supported in TL5.

Dynamics are always used as references and cannot be allocated because they
have no structure:

func use-dynamic(user ExampleDynamic example)
   example.dynamic-method(copy 3)





Now use-dynamic function can be called with any item that implements
ExampleDynamic.

Dynamics are implemented in C as a C structure containing all the dynamic
members, where dynamic methods are implemented as pointer to functions. Each
implementation of the dynamic is a global instance of this structure. Dynamic
references are implemented as 2 references: one reference to the
dynamic structure and another reference to the implementing type instance.


Non-Dynamic Members

This is not supported in TL5.

Constants and global variables are declared and used exactly as global
members in static structures.

Static methods must be declared using static prefix:

dynamic ExampleDynamic
    func dynamic-method(copy Uint32 num)
    static func static-method(copy Uint32 num)
        ; implementation








Extending Dynamics

This is not supported in TL5.

Same syntax as structures:

dynamic ExtendingDynamic(BaseDynamic, OtherBaseDynamic)
    func additional-method(copy Uint32 num)








Support Dynamics in Structures

A structure can support a dynamic by implementing all
its dynamic members and explicitly declare it using the support keyword.
some implemented members may be added under the support line:

struct ExampleStructure
    func method(copy Uint32 num)
        ; implementation...

support ExampleDynamic in ExampleStructure
    func another-method()->(var Uint32 result)
        ; another implementation...





When a structure supports a dynamic, every structure
that extends it also supports the dynamic using the base structure
implementation. The extending structure may override some members of the
dynamic, but to use these overrides as the implementation of the dynamic
another support statement for the extended structure must be added:

struct BaseStruct
    func method(copy Uint32 num)
        ; base implementation...

support ExampleDynamic in BaseStruct

struct ExtendingStruct(BaseStruct)
    func method(copy Uint32 num)
        ; overriding implementation...

support ExampleDynamic in ExtendingStruct





Example for the dynamic dispatch of dynamics:

var ExampleStructure example-struct
var ExtendingStruct extending-struct
user BaseStruct base-struct(user extending-struct)
user ExampleDynamic example-dynamic

example-dynamic := example-struct
example-dynamic.method(copy 4)  ; will call ExampleStructure.method

example-dynamic := extending-struct
example-dynamic.method(copy 4)  ; will call ExtendingStruct.method

example-dynamic := base-struct
example-dynamic.method(copy 4)  ; will call BaseStruct.method
; will not call ExtendingStruct.method becasue structure dispach is static








Default Dynamic Member Implementation

This is not supported in TL5.

A dynamic may give a default implementation to some or all of its members and
its base dynamics members. Method implementations can use self and
global keywords to access its own members.

dynamic ExampleDynamic
    func implemented-method(copy Uint32 num) _
    func unimplemented-method()->(var Uint32 result)
    var Uint32 implemented-variable(copy 5)
    var Uint32 unimplemented-variable

func ExampleDynamic.implemented-method(copy Uint32 num) _
    ; implementation...










Classes and Binds

Syntax for the class typing style.

In TL5 this only partially implemented:


	Only class type definition is supported, Bind is not


	All restrictions on structures also apply to classes


	Only methods can be dynamic


	Variables don’t need to start with static keyword - as they cannot be
dynamic or global




A straightforward way to use classes is using the built-in Bind typed
references. References of this type only accept types that extend all bound
structures and implement all bound dynamics.

user Bind{ExampleStruct:ExampleDynamic} class-reference





Another way to use classes is to declare a type as a class in its definition
using the class keyword. Each non-global member of the class must come
after a static or a dynamic keyword to declare witch implicit type this
member belongs to: the structure or the dynamic. Global members are only
defined under the name-space of the class.

class ExampleClass
    static var Uint32 static-field  ; part of the implicit structure
    dynamic func dynamic-method(copy Uint32 num)  ; part of the implicit dynamic
    global var Uint32 global-variable  ; defined under the class name-space





Classes can implement dynamics using the same syntax as structures.

Class references are implemented using two C pointers: one for the structure,
and one for the dynamic.


Extending Classes

As all types:

class ExtendingClass(BaseStruct, BaseDynamic, BaseClass)
    static var Uint32 addition-static-field
    dynamic func addition-dynamic-method(copy Uint32 num)





In TL5 a class may only extend one other class or
structure.

Example for the dynamic dispatch of classes:

var ExtendingClass extending-class
user BaseClass base-class(user extending-class)
user ExampleDynamic example-dynamic

extending-class.method()  ; will call ExtendingClass.method
base-class.method()  ; will call ExtendingClass.method

example-dynamic := extending-struct
example-dynamic.method()  ; will call ExtendingStruct.method

example-dynamic := base-struct
example-dynamic.method()  ; will call ExtendingStruct.method








Using the Implicit Structure or Dynamic of a Class

This is not supported in TL5.

The implicit structure of a class can be used using the built-in Struct
type, and the implicit dynamic can be used using the built-in Dynamic
type. This is not supported in TL5.

var Struct{ExampleClass} static-structure-only
user Dynamic{ExampleClass} dynamic-interface-only










Parameterized Types

Syntax for the parameterized type typing style.

Each type parameter must have a type and a name. For static type names Type
should be used as the parameter type, and for dynamic parameters Generic
should be used as the parameter type. The parameter name must conform the
naming standard of types if one of these is used, else it must conform naming
standard of constants.

struct ParametrizedType{Uint32 CONSTANT-PARAMETER:Type TypeParameter:Generic GenericParameter}
    var String{CONSTANT-PARAMETER} parametrized-sized-string
    var TypeParameter static-parametrized-typed-variable
    user GenericParameter dynamic-parametrized-typed-reference





Whenever a parameterized type is used it must be set with appropriate values for
each parameter

var ParametrizedType{8:Uint32:File} specific-variable





This is partially supported in TL5:


	only dynamic parameters are supported (Generic type)


	no need to add Generic - only the parameter name is needed


	Arrays are not supported as parameter values







Embedded Dynamic Reference

Syntax for the embedded dynamic reference typing style.

This is not supported in TL5.

Embedded classes can be declared using the built-in Embed type:

; "ExampleStruct" structure with "ExampleDynamic" reference embedded
; inside it
var Embed{ExampleStruct:ExampleDynamic} explicit-embedded-variable

; "ExampleClass" static structure with a reference to its dynamic structure
; embedded inside it
var Embed{ExampleClass} implicit-embedded-variable





The syntax may change as this typing style is still under planning.







            

          

      

      

    

  

    
      
          
            
  
Control Flow


If-Else Condition

If-else condition is declared using if, else, and else-if keywords.
The condition expression must be boolean typed.

if x > 4
    ; do something
else-if x < 2
    ; do something
else
    ; do something








Switch-Case Condition

This is not supported in TL5.

Switch-case condition is declared using the switch keyword, contains
multiple case blocks, and optionally one last default block. A
fallthrough statement must be used to fall-through the next case - the
default is not to fall-through.

switch number
case 34
    ; do something
case 23
    ; do something
    fallthrough
case 45, 67, 26, 56, 67, 89, 56, 87
    ; do something
default
    ; do something








Simple Loop

Simple loop is declared using the loop keyword and contains one or more
while statements inside it. The loop continues while every while
statement inside it is true, and stops immediately when the first while
statement inside it is false.

loop
    ; do something
    while number < 6
    ; do something
    while not boolean-variable
    ; do something





Loops can be broken immediately using a break statement:

loop
    ; do something
    if number = 0
        break
    ; do something





That makes while condition the same as if not condition break.

A continue statement can be used to only stop the current iteration and
start over from loop beginning:

loop
    ; do something
    if num = 3
        continue
    ; do something





It is possible to limit the number of loop iterations, when the limit is
reached an error is raised:

loop! number
    ; do something
    while condition






Note

The ! warning sign must be used if error is to be propagated.



Loops must contain at least one while, break or return statement -
otherwise the compiler will complain about an infinite loop. If an infinite
loop is intentional loop-infinite must be used:

loop-infinite
   ; do something forever








Repeat Loop

A simple loop that just repeats itself a specific number of times:

repeat number
    ; do this "number" times








For Loop

For loop iterates over a specific set of values, and is declared using the
for keyword.

Iterating numbers incrementally, limits can be any integer expression:

for number in 3:7
    ; "number" will iterate 3,4,5,6





Number iteration with explicit step amount, this is not supported in TL5:

for number in 9:1:-2
    ; "number" will iterate 9,7,5,3





Array iteration:

for item in array
    ; "item" will iterate each item of "array"





String iteration:

for character in "Example"
    ; "character" will iterate E,x,a,m,p,l,e





Buffer iteration:

for byte in `baffdaca`
    ; "character" will iterate ba,ff,da,ca





In all for loops it is possible to ignore the iteration item by replacing it
with _:

for _ in 3:7
    ; will iterate 4 times






User Defined Iterators

A type can be made into an iterator in TL5 by implementing
a step named method that has the following deceleration:


	
step()->(user SomeType? value, var Bool has-another-item)

	Is called once before any iteration. Iteration continue only
if has-another-item is true. In such case value returns
the next iteration value, and the iteration should advance one step.
SomeType declared in this method is used as the iterator value type.





An instance of such iterator type can be used in for loops:

for item in iterator-instance
    ; "item" will iterate as implemented by "iterator-instance" type





This interface may change in the final syntax - the exact syntax is still under
planning.









            

          

      

      

    

  

    
      
          
            
  
Testing

Lumi has built-in testing and mocking capabilities.

Testing code should be written under a different module than the tested code.
In the testing code there should be test cases that test
the tested module using assertions. Mocking should
be used to simulate external interfaces.

Lumi can then run all test cases automatically, while also checking code
coverage for the tested module.


Test Cases

Can be written using the test keyword:

test test-case-name()
    ; test code





The test case is consider a success if the code runs without any assertion
or runtime errors.




Assertions

Assertions test that a certain condition is true.

The basic assertion is the assert statement that checks whether a given
boolean expression is true. If not, this statement will raise an assertion error
and the test will fail.

assert! number = 4





Another assertion is the assert-error statement that checks whether a given
expression raises an error. If the execution of the statement didn’t raise an
error this statement will raise an assertion error and the test will fail.

assert-error! raising-function()





In TL5 assert-error supports an optional additional
string literal that is the expected error message. If the raised error message
is not exactly the same as this literal, assert-error will raise an
assertion error and the test will fail.

assert-error! raising-function(), "expected error message"






Note

The ! warning sign must be used if error is to be propagated, which is
recommended for the test to fail…






Mocking

Mocking can replace an external interface with simulated behavior.

In TL5, only functions and methods can be mocked.

Mocking a function or method is done using the mock keyword. The function
name and its arguments access and type must much the mocked function exactly.
Whenever the mocked function is used the mocking function is called instead.

mock mocked-module.mocked-function(copy Uint32 input)->(var Uint32 output)
    ; mocking body

mock mocked-module.MockedType.mocked-method()
    ; mocking body





Built-in functions and methods can also be mocked:

mock Sys.print(user String text)
    ; mocking body

mock FileReadText.new(user String filename)
    ; mocking body





The mocked function can still be called using mocked member:

mocked-function-name.mocked()





To disable mocking of a function active member can be set to
false. To re-enable mocking it can be set back to true.
Mocks are active by default.

mocked-function-name.active := false
mocked-function-name()
mocked-function-name.active := true











            

          

      

      

    

  

    
      
          
            
  
Interacting with Other Languages

Lumi allows calling C code directly. This is useful for using an external C
library, or using already written C code within Lumi code.


Warning

Calling C code cannot be guaranteed to be safe as the C code can mangle with
the Lumi memory management.



It is also possible to call Lumi functions from other languages by compiling
Lumi to a shared library that exports C style functions.


The cdef Module

The builtin cdef module contains various C declarations that help
interacting with C code.


C Primitives

cdef contains many C primitive types:


	cdef.Char


	cdef.Uchar


	cdef.Short


	cdef.Ushort


	cdef.Int


	cdef.Uint


	cdef.Long


	cdef.Ulong


	cdef.Size


	cdef.Float


	cdef.Double


	cdef.LongDouble







C Pointers

cdef contains cdef.Pointer generic type to declare C pointers:

var cdef.Pointer{cdef.Int} pointer-to-int
var cdef.Pointer{cdef.Char} pointer-to-char
; "cdef.CharP" is an alias to "cdef.Pointer{cdef.Char}"
var cdef.CharP also-pointer-to-char
var cdef.Pointer{cdef.Uchar} pointer-to-uchar
var cdef.Pointer{cdef.Pointer{cdef.Int}} pointer-to-pointer-to-int
var cdef.Pointer void-pointer





Set and get pointed value:

var cdef.Int value
pointer-to-int.set-point-to(var value)
pointer-to-pointer-to-int.set-point-to(var pointer-to-int)
pointer-to-int := pointer-to-pointer-to-int.get-pointed-at(copy 0)
value := pointer-to-int.get-pointed-at(copy 0)





Get and set pointer from array, string and buffer:

user Array{cdef.Int} int-array
user String string
user Buffer buffer
pointer-to-int := int-array
pointer-to-char := string.cdef-pointer()
pointer-to-uchar := buffer
value := pointer-to-int.get-pointed-at(copy 3)
cdef.copy-to-string(copy pointer-to-char, user string)!
cdef.copy-to-buffer(copy pointer-to-uchar, copy 4, user buffer)!





Pointer to complex types:

user SomeStruct reference
var cdef.Pointer{SomeStruct} pointer-to-struct
pointer-to-struct := reference
reference := pointer-to-struct.get-ref-at(copy 0)










Calling C Functions

To call a C function from Lumi it must first be declared using the
native func statement:

; allow calling a C function with header:
; "int some_c_function(int number)"
native func cdef.Int some-c-function(copy cdef.Int number)
; "_" characters in the C function name are replaced with "-" in Lumi

; allow calling a C function with header:
; "void CfunctionName(int number, char* text)"
native func name-used-in-lumi(
        copy cdef.Int number,
        copy cdef.Pointer{cdef.Char} text) "CfunctionName"
; Lumi name can be different than the C name





These functions can now be called from Lumi code using their Lumi name.

Native functions Have some limitation compared to normal Lumi functions:


	have no output arguments, only input parameters and an optional single
return type


	all parameters must be primitives, with copy access


	cannot be called with output arguments:
native-function()->(copy output-argument) is illegal, may use
output-argument := native-function() instead







Accessing C Global Variables

In order to access a C global variable it must be declared using the
native var statement:

; allow accessing "int some_c_variable" global variable
native var cdef.Int some-c-variable

; allow accessing "char* CvariableName" global variable
native var cdef.Pointer{cdef.Char} name-used-in-lumi "CvariableName"





These variables can now be accessed from Lumi code using their Lumi name.

Only primitive types can be declared as native variables.




Accessing C Global Constants or Defines

In order to access a C global constant or a #define value it must be
declared using the native const statement:

; allow accessing "SOME_C_CONSTANT" global constant
native const cdef.Int SOME-C-CONSTANT

; allow accessing "c_constant_name" global constant
native const cdef.Int NAME-USED-IN-LUMI "c_constant_name"





These constant can now be accessed from Lumi code using their Lumi name.

Only primitive types can be declared as native constants. Currently in
TL5 only integer types are supported.




Accessing C Structures

It is possible to access custom C structures and their internal fields using
the native struct statement with var lines for each needed field:

; allow using "SomeCStruct" structure that have fields:
;   int some_filed;
;   char* other_field;
native struct SomeCStruct
    var cdef.Int some-filed
    var cdef.Pointer{cdef.Char} other-field

; allow using "struct c_struct_name" structure that have fields:
;   int CfieldName;
;   char* CanotherName;
native struct NameUsedInLumi "struct c_struct_name"
    var cdef.Int field-name-used-in-lumi "CfieldName"
    var cdef.Pointer{cdef.Char} another-lumi-field "CanotherName"





Not all of the original fields must be declared - only the ones that are needed
to be used in Lumi. It is also legal to not declare any fields at all:

native struct SomeCStruct





These structures can now be accessed from Lumi code using their Lumi name.

Native structures are treated as values and not as references like Lumi
structures. A pointer to the native structures can be used instead:

var cdef.Pointer{SomeCStruct} pointer-to-native-struct





Native structures fields are accessed as in Lumi structures:
native-struct.some-filed. This also works with pointers to native
structures: pointer-to-native-struct.some-filed.

Native structures can be used in other native functions, variables, constants,
and structures:

native func SomeCStruct c-func-name(copy SomeCStruct input)
native func cdef.Pointer{SomeCStruct} other-func(
    copy cdef.Pointer{SomeCStruct} input)
native var SomeCStruct c-var-name
native var cdef.Pointer{SomeCStruct} other-var
native struct CstructName
   var SomeCStruct struct-field
   var cdef.Pointer{SomeCStruct} pointer-field
   var cdef.Pointer{OtherStruct} self-pointer








Accessing Custom C Types

It is possible to handle values for custom C types that may be of any kind:
integers, structures, pointers, etc. These types are treated as “abstract”
values in Lumi, meaning that their exact structure is unknown and cannot be
accessed.

C types can be declared using the native type statement:

; allow using "SomeCtype" type:
native type SomeCtype

; allow using "c_type_name" type:
native type NameUsedInLumi "c_type_name"





These types can now be accessed from Lumi code using their Lumi name.

Native types are treated as abstract unknown values, the only way to use their
content is by other C functions.




Writing C Code Directly

It is possible to write C code directly using native code in global scope,
or just native inside a function

native code "#define SOME_NEEDED_DEFINE 1"

func is-unix()->(var Bool result)
    native "#ifdef __UNIX__"
    result := true
    native "#else"
    result := false
    native "#endif"





This may be used in some special cases where the other methods above are not
sufficient, or to write some special glue code between Lumi and C.




C Wrapper Code

It’s recommended to wrap native C declarations with pure Lumi declarations that
takes care for correct usage of the C declarations, and to present a simple and
safe pure Lumi interface.




Exporting C style Functions in a Shared Library

Functions that are meant to be exported when compiling Lumi code to a shared
library must be declared using native export statement:

; exporting a function with C header:
; "int some_exported_function(int number)"
native export cdef.Int some-exported-function(copy cdef.Int number)
    ; function body...
    return 0
; "-" characters in the Lumi function name are replaced with "_" in C

; exporting a function with C header:
; "void CfunctionName(int number, char* text)"
native export name-used-in-lumi(
        copy cdef.Int number,
        copy cdef.Pointer{cdef.Char} text) "CfunctionName"
    ; function body...
; Lumi name can be different than the C name





These export functions have the same rules and limitation
as native functions.

To return a value from the body of a native export functions that has a return
type return <value> statement can be used.

These functions are exported as C style functions and can be used from any
program using the same mechanic C functions are called from a shared library.
Only functions declared with native export and that are inside the exported
module will be accessible in the compiled shared library.







            

          

      

      

    

  

    
      
          
            
  
Standard Library

Currently implemented modules in TL5 standard library:


	data structures (basic)


	time


	math (basic)


	os (basic)


	zlib (basic)




Planned future modules in the standard library:


	more data structures


	math (full)


	os (full)


	zlib (full)


	system


	IO


	multiprocessing


	paths and files


	more compressions


	web-server (DB, HTTP, ext…)


	GUI








            

          

      

      

    

  

    
      
          
            
  
Code Examples


Hello World Program

A simple “Hello World” program written in TL5:

module hello-world

func ! show()
    sys.println(user "hello world")!

main!
    show()!








Testing the Hello World Program

Testing code for the “Hello World” program:

module hello-world-test

var Bool println-raise
var String printed-text

mock ! sys.println(user Buffer text)
    if println-raise
        raise! "error in println"
    printed-text.concat(user text)!

test show-hello-world-test()
    println-raise := false
    printed-text.clear()
    hello-world.show()!
    assert! printed-text.equal(user "hello world")

test show-raise-test()
    println-raise := true
    assert-error! hello-world.show(), "error in println"








Fibonacci Function

func fibonacci(copy Uint64 n)->(var Uint64 res)
    var Uint64 prev(copy 1)
    res := 0
    repeat n
        var Uint64 sum(copy res clamp+ prev)
        prev := res
        res := sum








Complex number Type

struct Complex
    var Sint64 real
    var Sint64 imaginary
    
    new(copy Sint64 real, copy Sint64 imaginary)
        self.real := real
        self.imaginary := imaginary

    func user ! str(user String out-str)
        self.real.str(user out-str)!
        out-str.append(copy ' ')!
        if self.imaginary > 0
            out-str.append(copy '+')!
        else
            out-str.append(copy '-')!
        out-str.append(copy ' ')!
        var String imaginary-str
        if self.imaginary > 0
            self.imaginary.str(user imaginary-str)!
        else
            (- self.imaginary).str(user imaginary-str)!
        out-str.concat(user imaginary-str)!
        out-str.append(copy 'i')!

func ! usage-example()
    var Complex complex(copy 5, copy 3)
    var String complex-str
    complex.str(user complex-str)!
    sys.println(user complex-str)!











            

          

      

      

    

  

    
      
          
            
  
Serialization

This is not supported yet in TL5.

Lumi is planned to support 3 layout types for converting structures to buffers, and
vice versa:


	encoding - same layout as the structure platform-specific memory layout


	serializing - platform-independent and CPU efficient implicit layout


	packing - explicit, platform-independent, user defined layout













	type

	CPU

	memory

	cross-platform

	explicit





	encoding

	best

	medium

	no

	no



	serializing

	medium

	worst

	yes

	no



	packing

	worst

	best

	yes

	yes










            

          

      

      

    

  

    
      
          
            
  
Asynchronous IO

This is not supported yet in TL5.

Lumi is planned to have a built-in support for asynchronous IO and running
parallel fibers (a.k.a coroutines / user-space-threads) in a single thread.

The syntax is not decided yet…





            

          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | W
 


A


  	
      	append() (String method)


  

  	
      	Array (built-in class)


  





B


  	
      	Bool (built-in class)


      	Buffer (built-in class)


      	
    built-in function

      
        	step()


        	sys.exit()


        	sys.getchar()


        	sys.getenv()


        	sys.getline()


        	sys.print()


        	sys.println()


        	sys.system()


      


  

  	
      	Byte (built-in class)


  





C


  	
      	Char (built-in class)


      	clear() (String method)


  

  	
      	close() (File method)


      	concat() (String method)


  





E


  	
      	equal() (String method)


  





F


  	
      	File (built-in class)


      	FileReadBinary() (File method)


      	FileReadText() (File method)


      	FileReadWriteBinary() (File method)


      	FileReadWriteText() (File method)


  

  	
      	FileWriteBinary() (File method)


      	FileWriteText() (File method)


      	find() (String method)


      	flush() (File method)


      	Func (built-in class)


  





G


  	
      	get() (File method)

      
        	(String method)


      


  

  	
      	getline() (File method)


  





H


  	
      	has() (String method)


  





I


  	
      	Int (built-in class)


  





L


  	
      	length() (Array method)

      
        	(String method)


      


  

  	
      	Long (built-in class)


  





N


  	
      	new() (String method)


  





P


  	
      	put() (File method)


  





R


  	
      	read() (File method)


  

  	
      	Real (built-in class)


  





S


  	
      	set() (String method)


      	
    step()

      
        	built-in function


      


      	str() (Int method)


      	String (built-in class)


      	
    sys.exit()

      
        	built-in function


      


      	
    sys.getchar()

      
        	built-in function


      


  

  	
      	
    sys.getenv()

      
        	built-in function


      


      	
    sys.getline()

      
        	built-in function


      


      	
    sys.print()

      
        	built-in function


      


      	
    sys.println()

      
        	built-in function


      


      	
    sys.system()

      
        	built-in function


      


  





T


  	
      	tell() (File method)


  





W


  	
      	write() (File method)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Lumi Language Guide
        


        		
          Quick Start - Hello World Example
          
            		
              Quick Installation
            


            		
              Hello World Program
            


            		
              Hello World Test
            


          


        


        		
          Installing and Building Lumi
          
            		
              Syntax Highlighting
            


            		
              Installing Lumi
            


            		
              Building the Lumi Compiler
              
                		
                  Latest Version - TL5 Compiler
                


                		
                  Old Versions
                


              


            


            		
              Building the lumi Command
            


          


        


        		
          Using the lumi Command
          
            		
              Command Help
            


            		
              Usage
            


            		
              Specifying an Explicit Output File Name
            


            		
              Compiling Tests
            


            		
              Compiling a Shared Library
            


            		
              Only Running Lumi Compiler
            


            		
              Only Running C Compiler
            


            		
              Extra C arguments
            


            		
              Running the Generated Executable
            


            		
              Verbose and Debug
            


            		
              Old Version Limitations
              
                		
                  LUMIPATH
                


                		
                  Path Separator
                


              


            


          


        


        		
          Using Lumi Compiler Directly
          
            		
              Latest Version - TL5 Compiler
            


            		
              Compiling Testing Code
            


            		
              Compiling Shared Library Code
            


            		
              Building an Executable
            


            		
              Old Versions
            


          


        


        		
          Lumi Language Goals and Features
          
            		
              Prioritized Goals
            


            		
              Features
            


          


        


        		
          Memory Management
          
            		
              No Performance Overhead - compile time only reference managing
            


            		
              More Flexible Reference Managing - with a small performance cost
            


            		
              Maximum Flexibility - but with performance issues
            


            		
              Conditional and Empty References
            


          


        


        		
          Thread Safety
          
            		
              The default approach - complete data isolation
            


            		
              Sharing data between threads
              
                		
                  Constant and immutable data
                


                		
                  Atomic operations
                


                		
                  Messaging
                


                		
                  Built-in thread-safe data structures
                


                		
                  Automatic locks
                


              


            


          


        


        		
          Integer Ranges and Overflow Prevention
          
            		
              Integer Ranges
            


            		
              Integer Arithmetic
            


            		
              Compile Time Overflow Prevention
            


            		
              Run-Time Overflow Checking
            


            		
              Efficient Native Wraparound
            


            		
              Clamping
            


            		
              Sequences Index Integer Range
            


          


        


        		
          Type System
          
            		
              Typing Styles of User Defined Types
            


            		
              Static Structures
            


            		
              Dynamic Interfaces
            


            		
              Extending Types
            


            		
              Classes - Binding Dynamic Interfaces and Static Structures
            


            		
              Parameterized Types
              
                		
                  Static Parameters
                


                		
                  Dynamic Parameters
                


              


            


            		
              Embedding a Dynamic Reference in a Static Structures
            


            		
              Automatic Dynamic Interfaces
            


          


        


        		
          General Syntax Highlights
          
            		
              TL[number] - Temporary Lumi Language
            


            		
              Latest Version - TL5
            


          


        


        		
          Basic Syntax
          
            		
              Comments
            


            		
              Documentation
            


            		
              Operators
              
                		
                  Operator Precedence
                


              


            


            		
              Modules
            


          


        


        		
          Built-in Types
          
            		
              Integer
              
                		
                  Int
                


              


            


            		
              Infinitely Long Integer
              
                		
                  Long
                


              


            


            		
              Boolean
              
                		
                  Bool
                


              


            


            		
              Character
              
                		
                  Char
                


              


            


            		
              Byte
              
                		
                  Byte
                


              


            


            		
              Real Number
              
                		
                  Real
                


              


            


            		
              Function
              
                		
                  Func
                


              


            


            		
              Array
              
                		
                  Array
                


              


            


            		
              Buffer
              
                		
                  Buffer
                


              


            


            		
              String
              
                		
                  String
                


              


            


            		
              Files
              
                		
                  File
                


              


            


            		
              sys Module
              
                		
                  sys.print()
                


                		
                  sys.println()
                


                		
                  sys.getchar()
                


                		
                  sys.getline()
                


                		
                  sys.exit()
                


                		
                  sys.system()
                


                		
                  sys.getenv()
                


              


            


          


        


        		
          Variables and Constants
          
            		
              Compile-Time Constants
            


            		
              Enumerators
            


            		
              Primitive Variables
            


            		
              References
              
                		
                  Conditionals
                


                		
                  Weak References
                


                		
                  Comparisons
                


                		
                  String and Buffer Literals
                


              


            


            		
              Static Allocation
            


            		
              Dynamic Allocation
            


          


        


        		
          Functions
          
            		
              Summary
            


            		
              Arguments
            


            		
              Access
            


            		
              Return and Output
            


            		
              Error Handling
              
                		
                  Error Propagation
                


                		
                  Error Catching
                


              


            


            		
              Calling a Function
            


          


        


        		
          User Defined Types
          
            		
              Static Structures
              
                		
                  Global Members
                


                		
                  Methods
                


                		
                  Constructor Method
                


                		
                  Destructor Method
                


                		
                  Extending Structures
                


              


            


            		
              Dynamic Interfaces
              
                		
                  Non-Dynamic Members
                


                		
                  Extending Dynamics
                


                		
                  Support Dynamics in Structures
                


                		
                  Default Dynamic Member Implementation
                


              


            


            		
              Classes and Binds
              
                		
                  Extending Classes
                


                		
                  Using the Implicit Structure or Dynamic of a Class
                


              


            


            		
              Parameterized Types
            


            		
              Embedded Dynamic Reference
            


          


        


        		
          Control Flow
          
            		
              If-Else Condition
            


            		
              Switch-Case Condition
            


            		
              Simple Loop
            


            		
              Repeat Loop
            


            		
              For Loop
              
                		
                  User Defined Iterators
                


              


            


          


        


        		
          Testing
          
            		
              Test Cases
            


            		
              Assertions
            


            		
              Mocking
            


          


        


        		
          Interacting with Other Languages
          
            		
              The cdef Module
              
                		
                  C Primitives
                


                		
                  C Pointers
                


              


            


            		
              Calling C Functions
            


            		
              Accessing C Global Variables
            


            		
              Accessing C Global Constants or Defines
            


            		
              Accessing C Structures
            


            		
              Accessing Custom C Types
            


            		
              Writing C Code Directly
            


            		
              C Wrapper Code
            


            		
              Exporting C style Functions in a Shared Library
            


          


        


        		
          Standard Library
        


        		
          Code Examples
          
            		
              Hello World Program
            


            		
              Testing the Hello World Program
            


            		
              Fibonacci Function
            


            		
              Complex number Type
            


          


        


        		
          Serialization
        


        		
          Asynchronous IO
        


      


    
  

_static/lumi.jpeg





_static/minus.png





_static/file.png





_static/plus.png





